
G I T L AB

SCALED CONTINUOUS INTEGRATION
& DELIVERY
DELIVER BETTER SOFTWARE, FASTER, WITH GITLAB’S BEST-IN-CLASS CI/CD

WHAT'S INSIDE?
CI/CD: NON-NEGOTIABLE FOR MODERN SOFTWARE DEVELOPMENT

»» Software development before CI/CD

»» How does CI/CD work?

CI/CD AND YOUR BUSINESS

BENEFITS OF SINGLE DEVOPS APPLICATION
»» Time efficient

»» Resource efficient	

»» Control and visibility

SCALING CI/CD WITH CONTAINERS
»» What is a container?

»» CI/CD with containers

GETTING STARTED

»» Choosing a CI/CD solution

»» Adopting CI/CD

ABOUT GITLAB

Today, whatever your business, customer expectations are largely the same:

they want a great product and efficient service. The days of annual releases,

with a pre-defined feature set bundled onto compact discs and delivered to

retailers, are far behind us. Delivering customer value at the pace required

demands a refined software development lifecycle that saves time, effort, and

cost wherever possible.

Continuous Integration (CI) – the practice that developers use to detect,

locate, and fix errors quickly by integrating their code frequently into a shared

repository and running automated tests on it – has become a non-negotiable

aspect of everyday work for development teams.

Continuous Delivery (CD) is the next step: it ensures that new code is always in a

state that’s ready to be deployed, reducing your cycle time and creating a fast,

effective feedback loop between you and your customers.

Continuous Deployment (CD) going a step beyond simply preparing code to

be deployed, continuous deployment pushes code to production when all

automated tests pass.

CI/CD plays a critical role in making sure that new code addressing customer

needs is fully functional and deployed, early and often.

Continuous Integration: The practice that developers use to detect,
locate, and fix errors quickly by integrating their code frequently into
a shared repository and running automated tests on it.

CI/CD: NON-NEGOTIABLE FOR
MODERN SOFTWARE DEVELOPMENT

87% of developers believe
practicing continuous

integration alleviates blockers
in the development process1

1 GitLab 2018 Global Developer Survey, about.gitlab.com/developer-survey/2018

https://about.gitlab.com/developer-survey/2018/

SOFTWARE DEVELOPMENT
BEFORE CI/CD

The move towards a shorter release cycle in response to the changing pace

of the software landscape is enabled in many ways by adopting Continuous

Integration, Delivery, and Deployment. But it wasn’t always this way: sluggish

development, infrequent releases and siloed teams created bottlenecks in

the run-up to releases as merge conflicts arose late in the cycle. Responses to

customer and stakeholder feedback were often stalled.

Adopting CI/CD addresses many of the technical issues responsible for inefficient

software development lifecycles (such as discovering merge conflicts too late),

but it doesn’t just have a technical impact, it influences the entire software

development process. From deciding on feature sets, to working on new code,

to going to market and gathering user feedback to influence the next iteration,

CI/CD encourages working in a more continuous way beyond the technical

components of the process.

Before CI/CD With CI/CD

Annual releases Frequent releases

Waterfall approach Collaborative approach

Coding in isolation
New code regularly checked into shared

repository

Merge conflicts Seamless merges

Manual testing Automated testing

Pre-production bottlenecks Code is production-ready at all times

Manual deployments Automated deployments

Feedback gathered too late for next release Rapid feedback loop

By leveraging a CI tool, you can also take advantage of the fact that it has

significantly more flexibility and power available: for example, it can run tests

across multiple operating systems, multiple browsers, and in general do more

work than is practical on a developer’s machine. If you wait until the end of

the development to find out a change fails on a specific operating system or

browser, that can become expensive and could jeopardize the release.

A CI system can also offload a lot of work from the developer. They no longer

have to worry about building their changes with a variety of different operating

systems or other environments. The CI system can take care of all that, and

leverage its ability to integrate with elastic compute tools like Docker and

Kubernetes to take full advantage of the power of the cloud, without having

to run on a development machine. Best of all, all of this work is automated,

which frees up the developer to move onto other tasks while the build and tests

complete.

Continuous Delivery is an evolution of Continuous Integration: if your automated

build passed all its tests, why stop there? Continuous Delivery ensures that the

staging environment is always reflective of the latest changes, so it’s ready for

review and feedback by stakeholders right away, and is ready to be deployed

HOW DOES CI/CD WORK?

With a Continuous Integration strategy, developers check their new code

in frequently, triggering automated processes that occur on every commit

a developer makes. Most commonly, this includes running a build and then

performing automated tests, giving you a team-wide view of the health of every

commit and whether it builds and passes tests. Using CI in conjunction with

Git, you can take advantage of fast, lightweight branching to enable building and

testing changes on a staging or development branch before merging to

the master branch. If all goes well, you can go ahead and merge, and perform

another CI run on the master branch as an additional quality gate.

By leveraging CI you become
proactive rather than reactive,

ultimately saving money.

at the touch of a button. The next natural step for organizations with mature

DevOps practices is to adopt Continuous Deployment. Automating the entire test

and deploy process nets to most benefits in terms of speed of innovation.

CI/CD AND YOUR BUSINESS
Sometimes the link between the tools developers want to use and the business

value they offer isn’t clear. Fortunately with CI/CD, the connection is immediately

obvious. By checking in new code regularly and testing it automatically,

everyone can rest easy knowing that bug fixes, improvements and new features

work and the code isn’t broken, removing the anxiety from deployments.

Catching errors earlier in the cycle can prevent time-consuming and potentially

costly backtracking. Ensuring that new code is always ready for instant

deployment reduces bottlenecks in the run-up to a new release, so you can

deliver early and often. Delivering early and often facilitates a quick feedback

cycle between you and your users, boosting customer satisfaction and loyalty.

And with the introduction of review apps, previewing changes, sharing them

with stakeholders and gathering feedback is as simple as sending a link to click. Review Apps: A feature that automatically spins up a dynamic
environment for merge requests, so you can preview changes right
away.

BENEFITS OF A SINGLE
DEVOPS APPLICATION
Of course, the advantages of CI/CD is neither controversial nor new, and there

have been a number of solutions on the market for a while. These are usually

bolted onto other tools, whether they’re popular for on-premises (such as

Jenkins) or rooted in the cloud (like Travis or CircleCI). Many organizations find

these sufficient for their needs, but there has been growing interest in built-in CI/

CD solutions. GitLab was rated as a leader in Forrester’s 2017 CI Wave, scoring

the highest marks for Current Offering as well as Strategy.

Challengers Contenders Leaders
Strong

Performers

StrategyWeak Strong

Current
offering

Weak

Strong

Market presence

Full vendor participation

Incomplete vendor participation

Atlassian AWS

CircleCI

CloudBees

Codeship

GitLab

IBM

JetBrains

Travis CI
Microsoft

The Forrester Wave™ is copyrighted by Forrester Research, Inc. Forrester and Forrester Wave™ are trademarks of
Forrester Research, Inc. The Forrester Wave™ is a graphical representation of Forrester’s call on a market and is
plotted using a detailed spreadsheet with exposed scores, weightings, and comments. Forrester does not endorse
any vendor, product, or service depicted in the Forrester Wave. Information is based on best available resources.
Opinions reflect judgment at the time and are subject to change.

It’s more time efficient
It’s not unusual for an organization to rely on a number of distinct tools to

fulfil each stage of the cycle, but it’s not always the most efficient approach.

A single application that includes agile planning, source code management,

CI/CD, monitoring, and security reduces administrative complexity, and

allows developers to spend less time stringing together their tooling and

troubleshooting when APIs change.

Tighter integration between different stages of the development process

facilitates the creation of cross-references between code, tests and deployments

while discussing them, making it easier to see the full context. Reducing the

need for context-switching can also speed up workflow – leaving more time for

the work that matters, like building new features.

It’s more resource efficient
CI/CD coupled with elastic compute resources using containers empowers

you to dynamically scale up or down easily, on demand, helping to save on

infrastructure costs. If the output of your build is a container image, you can take

advantage of the consistency and repeatability of Dockerizing your builds by

pushing to the built-in registry and running CI from there.

It gives you more control and visibility
Having your CI/CD integrated into the repository management system gives

developers more control and visibility over their build pipeline, making it even

easier to identify issues early and address them while costs are still low. This is in

line with the DevOps concept of “shifting left3,” which moves processes such as

reviews and testing to earlier stages in the software development lifecycle. The

other upshot is that using version control for build scripts and CI configuration

gives you the peace of mind of being able to restore easily to an earlier version if

a bug is introduced.

2 The HP FutureSmart Case Study, Dr. Nicole Forsgren, Jez Humble, and Gene Kim, ContinuousDelivery.com

Adopting continuous integration and more agile
processes can result in up to 78% savings in

development costs per program, according to
the HP LaserJet Firmware team.2

3 Shift-left quality: Getting started with DevOps metrics. TechBeacon.com

https://continuousdelivery.com/evidence-case-studies/#the-hp-futuresmart-case-study
https://techbeacon.com/shift-left-quality-getting-started-devops-metrics

SCALING CI/CD WITH
CONTAINERS
Containers simplify the process of testing and deploying software4. They allow

you to package an application’s code and dependencies into a single, portable

“container” that can be easily moved across the development lifecycle.

Containers facilitate CI/CD by providing reliable, secure, and efficient application

environments that can easily scale up or down. Once configured, they allow

you to approximate a production environment, allowing development teams

to test the impact of their changes safely. For DevOps teams, this means that

developers can find and fix errors faster, reducing dependencies on operations

and effectively speeding up the development lifecycle.

By adopting container-based application development, you can more reliably

practice CI/CD.

4 Want Efficient CI and CD? Better start using containers. Chris Tozzi, TechTarget.com

http://searchmicroservices.techtarget.com/tip/Want-efficient-CI-and-CD-Better-start-using-containers?utm_content=control&utm_medium=EM&asrc=EM_ERU_78275478&utm_campaign=20170608_ERU%20Transmission%20for%2006/08/2017%20(UserUniverse:%202387095)&utm_source=ERU&src=5641244#commenting

What is a container?

A container is a method of operating system-based virtualization that allows

you to securely run an application and its dependencies independently without

impacting other containers or the operating system.

Containers work much like a virtual machine except that, instead of packaging

your code with an operating system, containers are run as a Linux process

inside of the kernel. This means that each container only contains the code and

dependencies needed to run that specific application, making them smaller and

faster to run.

CONTAINERS RETAIN THE SAME REPEATABILITY FACTOR AS VIRTUAL MACHINES,
BUT ARE MUCH FASTER AND USE LESS RESOURCES TO RUN.

CI/CD with containers
Containers make it possible to build one version of an application that can

be easily deployed to multiple types of environments — whatever developers

and QA run is exactly what you see in testing, staging, and production. Code

can be shipped faster when packaged in a container because errors and bugs

are caught earlier in the process. Whenever new changes are introduced into

the code, you simply update the container image and spin up a new container,

versus needing to uninstall the older version and replace it with a new one.

When applications are built as containers and run on an integrated continuous

integration server, developers can automatically test their code in a production-

like environment, closing the gap between development and operations.

When integrated with other development tools like GitLab, it’s possible to

automatically trigger a CI build every time a developer commits new code, run

tests in parallel, and spin up and destroy ephemeral production environments to

see the changes live.

CI/CD coupled with containers has the potential to fully automate the build, test,

and deploy stages of the software development lifecycle, making it easier and

faster for developers to review their code and ensure that it is production-ready.

Container: a lightweight method of operating system-based
virtualization that allows you to securely run an application and its
dependencies independently without impacting other applications or
the operating system.

CONTAINER

App

OS

AppLibs

Containers

Libs

App

CONTAINER

VM

App

OS

Hypervisor

LibsLibs

Virtualization

OS

Libs

App

VM

App

OS

LibsLibs

Bare Metal

Libs

App

GETTING STARTED

CHOOSING A CI/CD SOLUTION

Hosting
Hosting is an important consideration when choosing any new tool. Are you

looking for a SaaS solution or do you want to manage your own instance? For

self-managed applications you also want to be sure that installation options

exist for your preferred infrastructure whether that’s an on-premises data center,

favorite cloud provider, or both. The most sophisticated CI/CD solutions can

run in your data center for normal operations and then burst out to the cloud to

elastically meet demand for variable load.

Open source vs. commercial
Using an open source solution has its advantages: it's free of licensing costs,

you can see exactly what’s in the box, and make alterations if needed. However,

many enterprises find the engineering resources needed to configure and

maintain open source software makes the Total Cost of Ownership (TCO)

significantly higher than commercial licensing costs. Make sure you do your

research before committing: what if you need priority access to support? and If

the vendor decides to abandon the product, can you manage without them? Ask

these questions first.

Support for integrations
Find out what tools your teams are already using and if the CI/CD solution you're

considering is supported. We’ve already mentioned the benefits of a built-in

solution, and bringing all your tools under one product with one interface and

datastore is also useful for things like cycle analytics, which can help to reduce

the time between coming up with an idea and deploying it.

Built-In Continuous Integration

“For a long time GitLab CI used to be a separately deployed web

application, the UIs were not integrated in any way and they felt like

separate products, as if they were not even made by the same company.

At one point we decided to integrate it, and literally within one or

two weeks we started seeing new possibilities of interlinking these

applications. We’d think, ‘Hey, wouldn’t it be neat if we added a button

to the latest status of this page?’ which previously is something we never

would have thought about, because we really thought of the two as

separate products that need to talk over an established channel, instead

of just putting a link in everywhere where it would useful to have a link to

CI. So with a built-in solution, the integration you get is not just tighter,

it’s integrated in ways which other, siloed development teams, developing

separate products, would never think of.”

— DOUWE MAAN, GITLAB PLATFORM BACKEND LEAD

https://about.gitlab.com/features/cycle-analytics/?utm_medium=pdf&utm_source=whitepaper&utm_campaign=continuous+integration

Features for visualizing the release process
One of the advantages of leveraging CI/CD is being able to see changes and new

additions from the moment they're created. Below are some of the features

you’ll want to look out for when choosing a CI/CD tool:

Review Apps

Review Apps automatically spin up dynamic environments for new code before

it’s merged. They are like having a staging environment for every Merge Request.

Canary Deployments

Canary Deployment is another popular strategy for Continuous Delivery,

minimizing the impact of any issues with a new version by deploying it to a small

portion of the fleet first and monitoring their usage and behavior closely. This

portion serves as the “canary in the coal mine,” alerting you to problems so that

only a small percentage of users is affected before you rectify the error.

These are just a few of the features that can make a significant difference to your

team's efficiency.

Auto-scaling Agents

Agents, also known as “Runners”, are the software that runs each individual CI/

CD job. The ability to elastically scale up and down is necessary to handle burst

load during peak usage and save computer costs when demand lessens.

ADOPTING CI/CD
If you are not currently using any form of CI/CD, it may be that your teams are

not routinely testing new code at all, in which case you face a significant culture

change. Instead of simply deploying and hoping for the best, CI/CD means a

new, more proactive approach to working, and can take some time for teams

to adapt if they’re not used to writing and running tests. This may meet some

resistance up front, but the outcome of a more streamlined development cycle

with less downtime and disruption is ultimately worth the effort. If it’s less

intimidating to do so, begin by adopting CI to start with and introduce CD later.

If you’re already using a CI/CD tool and are looking to switch to another, the

initial migration can take a couple of days or a couple of months depending

on your migration strategy. To reduce complexity, a complete transition is

recommended. However, for organizations with many teams and projects, you

can also start by migrating one team or project at a time.

A new tool may require slightly different processes and ways of working which

can mean a shift in mindset. For example, GitLab CI/CD is more powerful if you

parallelize your tests and think of them as various interdependent stages, rather

than a sequential process. Teams often treat testing as a linear process so it can

be a mindshift to see them rather as working simultaneously.

Have questions or need more information about getting started? We’ve got you

covered! Get in touch.

https://about.gitlab.com/features/review-apps/?utm_medium=pdf&utm_source=whitepaper&utm_campaign=continuous+integration
https://docs.gitlab.com/ee/user/project/deploy_boards.html#canary-deployments?utm_medium=pdf&utm_source=whitepaper&utm_campaign=continuous+integration
https://www.google.com/url?q=https://docs.gitlab.com/runner/configuration/autoscale.html&sa=D&ust=1554916274433000&usg=AFQjCNG4g1NPBKWmcb_bRVn267ysyaZDjg
https://about.gitlab.com/sales/?utm_medium=pdf&utm_source=whitepaper&utm_campaign=continuous+integration

ABOUT GITLAB
GitLab is a single application built from the ground up for all stages of the

DevOps lifecycle for Product, Development, QA, Security, and Operations teams

to work concurrently on the same project. GitLab provides teams a single data

store, one user interface, and one permission model across the DevOps lifecycle

allowing teams to collaborate and work on a project from a single conversation,

significantly reducing cycle time and focus exclusively on building great software

quickly. Built on Open Source, GitLab leverages the community contributions

of thousands of developers and millions of users to continuously deliver new

DevOps innovations. More than 100,000 organizations from startups to global

enterprise organizations, including Ticketmaster, Jaguar Land Rover, NASDAQ,

Dish Network and Comcast trust GitLab to deliver great software at new speeds.

Contact Sales

“If your team is looking for a way to breathe fresh life into a
legacy CI pipeline, I suggest taking a look at GitLab CI/CD. It has
been a real game changer for our mobile team at Ticketmaster.”

— JEFF KELSEY, LEAD ANDROID ENGINEER AT TICKETMASTER
“HOW GITLAB CI/CD SUPPORTED TICKETMASTER'S RAMP UP TO WEEKLY MOBILE RELEASES”

Ready to get started?

Get in touch to learn more about GitLab’s open source and integrated

CI/CD solution.

https://about.gitlab.com/sales/?utm_medium=pdf&utm_source=whitepaper&utm_campaign=continuous+integration
https://about.gitlab.com/2017/06/07/continous-integration-ticketmaster/?utm_medium=pdf&utm_source=whitepaper&utm_campaign=continuous+integration

