
1

 A Developer’s Guide
to Application Security

2

What's inside?
Application Security today

What is DevSecOps and why is it important?
 » Shi!ing le!

Writing secure code
 » Security by design
 » Minimizing complexity
 » Managing third-party code
 » Testing
 » Compliance

Zero Trust for applications

Deploying secure apps
 » Take protective measures

Securing the DevOps lifecycle with GitLab
 » Want to learn more?

3

Application Security today
Web app and so!ware vulnerabilities are two of the top pathways along which businesses su"er
external attacks (Forrester, 2019). Traditional security practices aren’t able to scale at the rate that
IT shops are expected to deliver new so!ware and updates, largely because testing happens too
late in the development process: In fact, 49% of developers encounter the most project delays
during the testing stage of the SDLC, according to GitLab’s 2019 Global Developer Report. Too o!en,
vulnerabilities are discovered by the security team only a!er code has been merged and is in a test
environment. This forces additional hando" between development and security as teams try to find
the defect and make fixes – when developers have o!en moved on to their next project.

To help quicken the so!ware’s journey through security testing, developers are encouraged to write
secure code, but many organizations fail to define exactly what that means, and o!en fail to provide
tools to help the developer find and fix security flaws.

What is DevSecOps and
why is it important?
Many organizations have adopted DevOps as a means to shorten delivery times and encourage more
collaborative and iterative work. The next step is integrating security into DevOps practices, allowing
teams to move fast, deliver quality so!ware, and help their businesses avoid catastrophe.

Shi!ing le!
Bringing security practices forward within the development lifecycle is known as a shi! le!.
Developers are beginning to share responsibility for certain security processes, like testing, secure
coding, and dependency scanning, and shi!ing le! can make those tasks easier and more e"icient.

https://www.forrester.com/report/The+State+Of+Application+Security+2019/-/E-RES145135%23dialog-1571421634010-dialog
https://about.gitlab.com/developer-survey/

4

Development and security leaders should establish policies that use automation to test for
adherence during the coding process. Exception-based intervention can be used to tailor
policies to di"erent projects on an as-needed basis. Pre-established security policies will also
help developers understand exactly what is expected of them when it comes to secure coding.
During the development process, automated testing can be applied at code commit, giving
developers immediate feedback on the quality and security of their code.

Writing secure code
A lot goes into secure coding. Here are a few best practices to follow:

Security by design
The topic of security should be brought into the very first
meeting for every project. Rather than being bolted on at the
end, security considerations should be made at every step of
the process so that both the SDLC and so!ware itself is, quite
literally, secure by design.

Security and development teams should have a mutual understanding of each others’ requirements,
expectations for the project, and intended business outcomes, which can be achieved by general and
project-specific policies. It’s important that teams establish methods for maintaining secure code
through the entire lifespan of the so!ware, so that future updates don’t expose critical vulnerabilities.
It’s also helpful for project teams to understand compliance requirements before coding begins
so that so!ware doesn’t need to be retrofitted with measures like region-specific data management
or user access capabilities.

Security needs to become
a mindset: It’s everyone’s
responsibility, and everyone
can contribute.

5

Minimizing complexity
Simple code is clean code – but simple is a relative term. By minimizing complexity during the
coding process, developers can save themselves time in the future when going through remediation.
Dependency scanning will help developers identify vulnerabilities within the dependencies they’re
using, enabling them to fix them early, apply a patch while coding, and then test it as they proceed
instead of coming back to it later.

Complexity can also be minimized through the process itself: An integrated toolchain (or a single
tool for the entire development lifecycle) will ease the burden of increased security responsibilities
and provide a single source of truth to strengthen transparency and improve collaboration between
development and security. Manual integration and switching between platforms leave too much
room for human error. Auto-remediation will also come in handy by simplifying code feedback and
fix mechanisms.

Managing third-party code
Development teams should take an inventory of all of
their current third-party relationships. The goal is to gain
a thorough understanding of what’s being used, who is in
charge of the relationship (if applicable), and what data is
being accessed and stored.

Moving forward, work with the security team to create formal requirements and standards for all
new third parties: Ensure that third-party applications and code adhere to the business’ security and
compliance requirements. It’s also crucial to set data encryption policies (both for internal-only data,
and data that get shared with your partners) to protect data based on trigger actions or level
of sensitivity.

Regardless of where a breach
occurs, if it’s your business’s
data, it’s your responsibility.

6

Testing
Early-stage testing is a great method for shi!ing le!. An integrated, end-to-end tool will make
testing especially easy to adopt by enabling developers to code and test within the same interface.
When it comes to security testing, there are a number of principles every developer should know:

1. Test early, test o!en. The sooner developers
receive feedback, the better. Building upon code
that has already been reviewed and verified will
help teams cover more code and save both time
and resources down the road.

2. Breadth before depth. Before deep-diving into any of your code, mitigate risk by testing
every code change for the most common vulnerabilities (such as the OWASP Top 10) first.

3. Keep an automated log of every code deployment, dependency, and update. By providing
a record of every certified change and requiring approvals for resolving critical vulnerabilities,
a master log will both improve transparency and reduce risk. This will also help simplify the
audit process should inquiry become necessary.

4. Diversify your security scanning. A single type of test or scan isn’t going to reduce
much risk – defense in depth requires multiple scans, such as those outlined in the table below.
Employ a diverse set of tests to cover your bases.

Security tests and scans for the developer’s toolkit

SAST Static application security testing (SAST) looks for vulnerabilities
in the code itself.

DAST Dynamic application security testing (DAST) looks for vulnerabilities
in how the code functions.

Dependency scanning Dependency scans look for vulnerabilities in third-party code.

Container scanning Container scans look for vulnerabilities in the container image and registry.

License compliance License compliance tools look for compliance around the use of third-party code.

Mature DevOps practices are 90%
more likely to test 91-100% of all
code than early-stage DevOps
practices.
Source: GitLab 2019 Global Developer Report: DevSecOps

https://about.gitlab.com/developer-survey/

7

Compliance
A complete compliance strategy includes both regulatory and self-imposed policies. Standards set
by governments or governing bodies o!en cover the rules you need to live by, but aren’t much help
when it comes to quality and user experience. It’s important to make compliance requirements
well-known before coding begins so that they can be built into the workflow and product without
impeding user experience.

Zero Trust for applications
Zero Trust is exactly what it sounds like – a framework for trusting nothing. This includes
segmented infrastructure, data encryption and classification, and access levels approved only on an
as-needed basis. Zero Trust is also a good mechanism for establishing a security mindset and culture:
It encourages team members to approach projects with the expectation that what they’re working
on will, at some point, be attacked by malicious actors or exposed under insider threats.

Zero Trust can and should be used to assess potential vendors, partners, and third-party
functionality on whether they either fill a need in protecting your product, or will fit into your
security framework. Some important application control mechanisms include auditing, emergency
change control, identity and access management (including access control mechanisms like multi-
factor authentication), data inventorying and flow mapping, data loss prevention, and data archiving.
With cloud native applications, there is also a strong need for instrumentation and monitoring
the app’s infrastructure – your containers, orchestrators, and cloud services.

8

Deploying secure apps
Serverless computing, cloud-native, containers, and Kubernetes are changing how apps are
deployed and managed, and have also expanded attack surface and complexity for every business.
Cloud providers and orchestrators have some out-of-the-box security capabilities, but they won’t
cover everything. It’s up to your project team to check for and fill any open gaps. New tools and
services also o"er significant opportunity for misconfiguration (like the recent CapitalOne breach)
that could leave both employees’ and customers’ personal information at risk of exposure.

Take protective measures
To counter these risks, your team can take the following actions:

 » Stay current with system updates and patches. New vulnerabilities are constantly found in
open source so!ware, bringing the risk of zero day attacks. It’s therefore important to update
and patch as soon as possible.
 » Bring security into each so!ware iteration through automated testing. Secure coding
doesn’t stop at launch – updates, however small, should follow the same security testing and
standards as the initial app development process.
 » Secure horizontally before narrowing in. Mission critical apps are certainly important,
but stopping your security e"orts there will leave massive opportunity for malicious intent.
Instead, start by testing for common vulnerabilities across as many apps as possible, and
then dig deeper where you need to.
 » Simplify your workflow. Stay in the same tool as much as possible to make the process
easier: A streamlined toolchain (or single tool) will boost the likelihood of thorough testing,
and give a more complete picture of security vulnerabilities – made actionable for the
developer.

https://www.cnbc.com/2019/07/30/capital-one-hack-allegations-describe-a-rare-insider-threat-case.html

9

Securing the DevOps lifecycle
with GitLab
Developers can best achieve secure practices when using a tool that comprises everything they
need to get the job done. That’s where GitLab comes in. With every code commit, developers receive
results from automated tests, review the results themselves, scan dependencies and containers, and
collaborate directly with their security peers. Everything we do will help you deliver quality product
faster and with less risk.

Want to learn more?
Attend GitLab’s premier user
conference in San Francisco,
January 14

Read more on DevSecOps and
GitLab’s own security journey

Try GitLab Gold for free
Connect with us on Twitter
and LinkedIn

https://about.gitlab.com/events/commit/%23
https://about.gitlab.com/events/commit/%23
https://about.gitlab.com/events/commit/%23
https://about.gitlab.com/blog/tags.html%23security
https://about.gitlab.com/blog/tags.html%23security
https://about.gitlab.com/pricing/?utm_medium=pdf&utm_source=ebook&utm_campaign=betterproductsfaster&utm_content=guideappsecurity
https://twitter.com/gitlab
https://www.linkedin.com/company/gitlab-com/

10

	Bookmarks

